Title

Motion Retrieval Using Low-Rank Subspace Decomposition Of Motion Volume

Abstract

This paper proposes a novel framework that allows for a flexible and an efficient retrieval of motion capture data in huge databases. The method first converts an action sequence into a novel representation, i.e. The Self-Similarity Matrix (SSM), which is based on the notion of self-similarity. This conversion of the motion sequences into compact and low-rank subspace representations greatly reduces the spatiotemporal dimensionality of the sequences. The SSMs are then used to construct order-3 tensors, and we propose a low-rank decomposition scheme that allows for converting the motion sequence volumes into compact lower dimensional representations, without losing the nonlinear dynamics of the motion manifold. Thus, unlike existing linear dimensionality reduction methods that distort the motion manifold and lose very critical and discriminative components, the proposed method performs well even when inter-class differences are small or intra-class differences are large. In addition, the method allows for an efficient retrieval and does not require the time-alignment of the motion sequences. We evaluate the performance of our retrieval framework on the CMU mocap dataset under two experimental settings, both demonstrating promising retrieval rates.

Publication Date

1-1-2011

Publication Title

Computer Graphics Forum

Volume

30

Issue

7

Number of Pages

1953-1962

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1111/j.1467-8659.2011.02048.x

Socpus ID

84870177404 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84870177404

This document is currently not available here.

Share

COinS