Title

Electroconvulsive Shock Ameliorates Disease Processes And Extends Survival In Huntingtin Mutant Mice

Abstract

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by expanded polyglutamine repeats in the huntingtin (Htt) protein. Mutant Htt may damage and kill striatal neurons by a mechanism involving reduced production of brain-derived neurotrophic factor (BDNF) and increased oxidative and metabolic stress. Because electroconvulsive shock (ECS) can stimulate the production of BDNF and protect neurons against stress, we determined whether ECS treatment would modify the disease process and provide a therapeutic benefit in a mouse model of HD. ECS (50 mA for 0.2 s) or sham treatment was administered once weekly to male N171-82Q Htt mutant mice beginning at 2 months of age. Endpoints measured included motor function, striatal and cortical pathology, and levels of protein chaperones and BDNF. ECS treatment delayed the onset of motor symptoms and body weight loss and extended the survival of HD mice. Striatal neurodegeneration was attenuated and levels of protein chaperones (Hsp70 and Hsp40) and BDNF were elevated in striatal neurons of ECS-treated compared with sham-treated HD mice. Our findings demonstrate that ECS can increase the resistance of neurons to mutant Htt resulting in improved functional outcome and extended survival. The potential of ECS as an intervention in subjects that inherit the mutant Htt gene merits further consideration. Published by Oxford University Press 2010.

Publication Date

2-1-2011

Publication Title

Human Molecular Genetics

Volume

20

Issue

4

Number of Pages

659-669

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1093/hmg/ddq512

Socpus ID

78751687949 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/78751687949

This document is currently not available here.

Share

COinS