Title
Classical Design Structure Of Orthogonal Designs With Six To Eight Factors And Sixteen Runs
Keywords
alias patterns; design generators; fractional factorial designs; projection properties
Abstract
Most two-level fractional factorial designs used in practice involve independent or fully confounded effects (so-called regular designs). For example, for 16 runs and 6 factors, the classical resolution IV design with defining relation I = ABCE = BCDF = ADEF has become the de facto gold standard. Recent work has indicated that non-regular orthogonal designs could be preferable in some circumstances. Inhibiting a wider usage of these non-regular designs seems to be a combination of inertia/status quo and perhaps the general resistance and suspicion to designs that are computer generated to achieve 'X-Y-Z' optimality. In this paper each of the orthogonal non-isomorphic two-level, 16 run designs with 6, 7, or 8 factors (both regular and non-regular) are shown to have a classical-type construction with a 24 or a replicated 23 starting point. Additional factor columns are defined either using the familiar one-term column generators or generators using weighted sums of effects. Copyright © 2010 John Wiley & Sons, Ltd.
Publication Date
2-1-2011
Publication Title
Quality and Reliability Engineering International
Volume
27
Issue
1
Number of Pages
61-70
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1002/qre.1170
Copyright Status
Unknown
Socpus ID
79551550815 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/79551550815
STARS Citation
Johnson, Mark E. and Jones, Bradley, "Classical Design Structure Of Orthogonal Designs With Six To Eight Factors And Sixteen Runs" (2011). Scopus Export 2010-2014. 3302.
https://stars.library.ucf.edu/scopus2010/3302