Title
Draw: A New Data-Grouping-Aware Data Placement Scheme For Data Intensive Applications With Interest Locality
Keywords
Data layout; Data-intensive; Hadoop; MapReduce
Abstract
Recent years have seen an increasing number of scientists employ data parallel computing frameworks such as MapReduce and Hadoop to run data intensive applications and conduct analysis. In these co-located compute and storage frameworks, a wise data placement scheme can significantly improve the performance. Existing data parallel frameworks, e.g. Hadoop, or Hadoop-based clouds, distribute the data using a random placement method for simplicity and load balance. However, we observe that many data intensive applications exhibit interest locality which only sweep part of a big data set. The data often accessed together result from their grouping semantics. Without taking data grouping into consideration, the random placement does not perform well and is way below the efficiency of optimal data distribution. In this paper, we develop a new Data-gRouping-AWare (DRAW) data placement scheme to address the above-mentioned problem. DRAW dynamically scrutinizes data access from system log files. It extracts optimal data groupings and re-organizes data layouts to achieve the maximum parallelism per group subjective to load balance. By experimenting two real-world MapReduce applications with different data placement schemes on a 40-node test bed, we conclude that DRAW increases the total number of local map tasks executed up to 59:8%, reduces the completion latency of the map phase up to 41:7%, and improves the overall performance by 36:4%, in comparison with Hadoop's default random placement. © 2012 DSI.
Publication Date
12-1-2012
Publication Title
2012 Digest APMRC - Asia-Pacific Magnetic Recording Conference: A Strong Tradition. An Exciting New Look!
Number of Pages
-
Document Type
Article; Proceedings Paper
Personal Identifier
scopus
Copyright Status
Unknown
Socpus ID
84873167447 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/84873167447
STARS Citation
Shang, Pengju; Xiao, Qiangju; and Wang, Jun, "Draw: A New Data-Grouping-Aware Data Placement Scheme For Data Intensive Applications With Interest Locality" (2012). Scopus Export 2010-2014. 3975.
https://stars.library.ucf.edu/scopus2010/3975