Title
Determination Of Trace Elements In Bovine Semen Samples By Inductively Coupled Plasma Mass Spectrometry And Data Mining Techniques For Identification Of Bovine Class
Keywords
Bovine semen; Data mining; Inductively coupled plasma mass spectrometry (ICP-MS); Mineral
Abstract
The reproductive performance of cattle may be influenced by several factors, but mineral imbalances are crucial in terms of direct effects on reproduction. Several studies have shown that elements such as calcium, copper, iron, magnesium, selenium, and zinc are essential for reproduction and can prevent oxidative stress. However, toxic elements such as lead, nickel, and arsenic can have adverse effects on reproduction. In this paper, we applied a simple and fast method of multi-element analysis to bovine semen samples from Zebu and European classes used in reproduction programs and artificial insemination. Samples were analyzed by inductively coupled plasma spectrometry (ICP-MS) using aqueous medium calibration and the samples were diluted in a proportion of 1:50 in a solution containing 0.01% (vol/vol) Triton X-100 and 0.5% (vol/vol) nitric acid. Rhodium, iridium, and yttrium were used as the internal standards for ICP-MS analysis. To develop a reliable method of tracing the class of bovine semen, we used data mining techniques that make it possible to classify unknown samples after checking the differentiation of known-class samples. Based on the determination of 15 elements in 41 samples of bovine semen, 3 machine-learning tools for classification were applied to determine cattle class. Our results demonstrate the potential of support vector machine (SVM), multilayer perceptron (MLP), and random forest (RF) chemometric tools to identify cattle class. Moreover, the selection tools made it possible to reduce the number of chemical elements needed from 15 to just 8. © 2012 American Dairy Science Association.
Publication Date
12-1-2012
Publication Title
Journal of Dairy Science
Volume
95
Issue
12
Number of Pages
7066-7073
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.3168/jds.2012-5515
Copyright Status
Unknown
Socpus ID
84869501798 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/84869501798
STARS Citation
Aguiar, G. F.M.; Batista, B. L.; Rodrigues, J. L.; Silva, L. R.S.; and Campiglia, A. D., "Determination Of Trace Elements In Bovine Semen Samples By Inductively Coupled Plasma Mass Spectrometry And Data Mining Techniques For Identification Of Bovine Class" (2012). Scopus Export 2010-2014. 4046.
https://stars.library.ucf.edu/scopus2010/4046