Title
Toward A Taxonomy Linking Game Attributes To Learning: An Empirical Study
Keywords
card sort; computer-based training; game attribute; game attribute taxonomy; learning; learning outcomes; mental model; serious games; simulation/gaming; subject matter experts; taxonomy
Abstract
The serious games community is moving toward research focusing on direct comparisons between learning outcomes of serious games and those of more traditional training methods. Such comparisons are difficult, however, due to the lack of a consistent taxonomy of game attributes for serious games. Without a clear understanding of what truly constitutes a game, scientific inquiry will continue to reveal inconsistent findings, making it hard to provide practitioners with guidance as to the most important attribute(s) for desired training outcomes. This article presents a game attribute taxonomy derived from a comprehensive literature review and subsequent card sorts performed by subject matter experts (SMEs). The categories of serious game attributes that emerged represent the shared mental models of game SMEs and serve to provide a comprehensive collection of game attributes. In order to guide future serious games research, the existing literature base is organized around the framework of this taxonomy. © 2012 SAGE Publications.
Publication Date
12-1-2012
Publication Title
Simulation and Gaming
Volume
43
Issue
6
Number of Pages
729-760
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1177/1046878112439444
Copyright Status
Unknown
Socpus ID
84871232033 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/84871232033
STARS Citation
Bedwell, Wendy L.; Pavlas, Davin; Heyne, Kyle; Lazzara, Elizabeth H.; and Salas, Eduardo, "Toward A Taxonomy Linking Game Attributes To Learning: An Empirical Study" (2012). Scopus Export 2010-2014. 4120.
https://stars.library.ucf.edu/scopus2010/4120