Title
Stability Analysis Of The Dual Solutions For Stagnation-Point Flow Over A Non-Linearly Stretching Surface
Keywords
Dual solutions; Existence and uniqueness; Nonlinearly stretching surface; Stability analysis; Stagnation-point flow
Abstract
We formulate a general steady two-dimensional stagnation-point flow problem corresponding to the fluid flow over a non-linearly stretching sheet. We then study the existence, uniqueness and stability of the unsteady solutions about each steady solution. It is found that there exist two solution branches: one branch is always stable while the other is always unstable. Also, it is observed that with an increase in the nonlinearity of the stretching sheet, the stable solution becomes more stable while the unstable solution becomes more unstable. Further, we show that the stable solution is the physically meaningful solution and such a physical solution always exists. Moreover, the physically meaningful solution is shown to be monotone and unique. © 2012 Springer Science+Business Media B.V.
Publication Date
10-1-2012
Publication Title
Meccanica
Volume
47
Issue
7
Number of Pages
1623-1632
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1007/s11012-012-9541-6
Copyright Status
Unknown
Socpus ID
84865223787 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/84865223787
STARS Citation
Mahapatra, Tapas Ray; Nandy, Samir Kumar; Vajravelu, Kuppalapalle; and Van Gorder, Robert A., "Stability Analysis Of The Dual Solutions For Stagnation-Point Flow Over A Non-Linearly Stretching Surface" (2012). Scopus Export 2010-2014. 4601.
https://stars.library.ucf.edu/scopus2010/4601