Title

Gas-Induced Formation Of Cu Nanoparticle As Catalyst For High-Purity Straight And Helical Carbon Nanofibers

Keywords

carbon nanofibers; catalyst; Cu nanocrystal; gas-inducing method; helical; shape control

Abstract

The facile preparation of high-purity carbon nanofibers (CNFs) remains challenging due to the high complexity and low controllability in reaction. A novel approach using gas-induced formation of Cu crystals to control the growth of CNFs is developed in this study. By adjusting the atmospheric composition, controllable preparation of Cu nanoparticles (NPs) with specific size and shape is achieved, and they are further used as a catalyst for the growth of straight or helical CNFs with good selectivity and high yield. The preparation of Cu NPs and the formation of CNFs are completed by a one-step process. The inducing effect of N 2, Ar, H 2, and C 2H 2 on the formation of Cu NPs is systematically investigated through a combined experimental and computational approach. The morphology of CNFs obtained under different conditions is rationalized in terms of Cu NP and CNF growth models. The results suggest that the shapes of CNFs, namely, straight or helical, depend closely on the size, shape, and facet activity of Cu NPs, while such a gas-inducing method offers a simple way to control the formation of Cu NPs. © 2012 American Chemical Society.

Publication Date

10-23-2012

Publication Title

ACS Nano

Volume

6

Issue

10

Number of Pages

8611-8619

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1021/nn301880w

Socpus ID

84867768495 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84867768495

This document is currently not available here.

Share

COinS