Title

Gmcp-Tracker: Global Multi-Object Tracking Using Generalized Minimum Clique Graphs

Keywords

Data Association; Generalized Graphs; Generalized Minimum Clique Problem; GMCP; Human Tracking

Abstract

Data association is an essential component of any human tracking system. The majority of current methods, such as bipartite matching, incorporate a limited-temporal-locality of the sequence into the data association problem, which makes them inherently prone to IDswitches and difficulties caused by long-term occlusion, cluttered background, and crowded scenes.We propose an approach to data association which incorporates both motion and appearance in a global manner. Unlike limited-temporal-locality methods which incorporate a few frames into the data association problem, we incorporate the whole temporal span and solve the data association problem for one object at a time, while implicitly incorporating the rest of the objects. In order to achieve this, we utilize Generalized Minimum Clique Graphs to solve the optimization problem of our data association method. Our proposed method yields a better formulated approach to data association which is supported by our superior results. Experiments show the proposed method makes significant improvements in tracking in the diverse sequences of Town Center [1], TUD-crossing [2], TUD-Stadtmitte [2], PETS2009 [3], and a new sequence called Parking Lot compared to the state of the art methods. © 2012 Springer-Verlag.

Publication Date

10-30-2012

Publication Title

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Volume

7573 LNCS

Issue

PART 2

Number of Pages

343-356

Document Type

Article; Proceedings Paper

Personal Identifier

scopus

DOI Link

https://doi.org/10.1007/978-3-642-33709-3_25

Socpus ID

84867851396 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84867851396

This document is currently not available here.

Share

COinS