Title

Optimal Expansion Of A Drinking Water Infrastructure System With Respect To Carbon Footprint, Cost-Effectiveness And Water Demand

Keywords

Adaptive water resources management; Carbon footprint; Multiobjective programming; Regionalization; Systems analysis; Water supply

Abstract

Urban water infrastructure expansion requires careful long-term planning to reduce the risk from climate change during periods of both economic boom and recession. As part of the adaptation management strategies, capacity expansion in concert with other management alternatives responding to the population dynamics, ecological conservation, and water management policies should be systematically examined to balance the water supply and demand temporally and spatially with different scales. To mitigate the climate change impact, this practical implementation often requires a multiobjective decision analysis that introduces economic efficiencies and carbon-footprint matrices simultaneously. The optimal expansion strategies for a typical water infrastructure system in South Florida demonstrate the essence of the new philosophy. Within our case study, the multiobjective modeling framework uniquely features an integrated evaluation of transboundary surface and groundwater resources and quantitatively assesses the interdependencies among drinking water supply, wastewater reuse, and irrigation water permit transfer as the management options expand throughout varying dimensions. With the aid of a multistage planning methodology over the partitioned time horizon, such a systems analysis has resulted in a full-scale screening and sequencing of multiple competing objectives across a suite of management strategies. These strategies that prioritize 20 options provide a possible expansion schedule over the next 20 years that improve water infrastructure resilience and at low life-cycle costs. The proposed method is transformative to other applications of similar water infrastructure systems elsewhere in the world. © 2012 Elsevier Ltd.

Publication Date

11-15-2012

Publication Title

Journal of Environmental Management

Volume

110

Number of Pages

194-206

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1016/j.jenvman.2012.06.004

Socpus ID

84863708364 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84863708364

This document is currently not available here.

Share

COinS