Title
Image Degradation Due To Surface Scatter In The Presence Of Aberrations
Abstract
Ligand influence on the excited state structure of small neutral gold clusters (Au 2 and Au 4) has been investigated using Time Dependent Density Functional Theory. We study in detail the absorption profile of bare and ligated small gold clusters in solution modeled with Polarizable Continuum Model. Performance of CAM-B3LYP and TPSS DFT functionals combined with TZVP basis set has been assessed. We found that ligands substantially modify the excited state structure of clusters by eliminating low-lying optically inactive excited states. Depending on the ligand environment, the cluster may gain significant fluorescence efficiency. Our results suggest that small gold clusters ligated with amines will have better fluorescence potential compared to those ligated with phosphine or thiol ligands, in agreement with preliminary experimental data. TPSS fails to describe excited state structure of ligated clusters due to spurious charge-transfer states, thus highlighting the necessity of choosing appropriate quantum-chemistry model for correct excited state description. © 2012 American Chemical Society.
Publication Date
2-10-2012
Publication Title
Applied Optics
Volume
51
Issue
5
Number of Pages
535-546
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1364/AO.51.000535
Copyright Status
Unknown
Socpus ID
84856927575 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/84856927575
STARS Citation
Choi, Narak and Harvey, James E., "Image Degradation Due To Surface Scatter In The Presence Of Aberrations" (2012). Scopus Export 2010-2014. 4988.
https://stars.library.ucf.edu/scopus2010/4988