Title

Radiation Effects On Mixed Convection Over A Wedge Embedded In A Porous Medium Filled With A Nanofluid

Keywords

Brownian diffusion; Keller box method; Mixed convection; Nanofluid; Porous media; Thermal radiation; Thermophoresis; Wedge

Abstract

The problem of steady, laminar, mixed convection boundary-layer flow over an isothermal vertical wedge embedded in a porous medium saturated with a nanofluid is studied, in the presence of thermal radiation. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis with Rosseland diffusion approximation. The wedge surface is maintained at a constant temperature and a constant nanoparticle volume fraction. The resulting governing equations are non-dimensionalized and transformed into a non-similar form and then solved by Keller box method. A comparison is made with the available results in the literature, and our results are in very good agreement with the known results. A parametric study of the physical parameters is made, and a representative set of numerical results for the velocity, temperature, and volume fraction, the local Nusselt and Sherwood numbers are presented graphically. The salient features of the results are analyzed and discussed. © 2011 Springer Science+Business Media B.V.

Publication Date

1-1-2012

Publication Title

Transport in Porous Media

Volume

91

Issue

1

Number of Pages

261-279

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1007/s11242-011-9843-5

Socpus ID

83055181239 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/83055181239

This document is currently not available here.

Share

COinS