Title
Mechanics Of Hip Dysplasia Reductions In Infants Using The Pavlik Harness: A Physics-Based Computational Model
Keywords
Dynamical analysis; Hip dysplasia; Non-linear muscle model; Passive reduction; Pavlik harness
Abstract
Biomechanical factors influencing the reduction of dislocated hips with the Pavlik harness in patients of Developmental Dysplasia of the Hip (DDH) were studied using a three-dimensional computer model simulating hip reduction dynamics in (1) subluxated and (2) fully dislocated hip joints. Five hip adductor muscles were identified as key mediators of DDH prognosis, and the non-dimensional force contribution of each in the direction necessary to achieve concentric hip reductions was determined. Results point to the adductor muscles as mediators of subluxated hip reductions, as their mechanical action is a function of the degree of hip dislocation. For subluxated hips in abduction and flexion, the Pectineus, Adductor Brevis, Adductor Longus, and proximal Adductor Magnus contribute positively to reduction, while the rest of the Adductor Magnus contributes negatively. In full dislocations all muscles contribute detrimentally to reduction, elucidating the need for traction to reduce Graf IV type dislocations. Reduction of dysplastic hips was found to occur in two distinct phases: (a) release phase and (b) reduction phase. © 2013 Elsevier Ltd.
Publication Date
5-31-2013
Publication Title
Journal of Biomechanics
Volume
46
Issue
9
Number of Pages
1501-1507
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1016/j.jbiomech.2013.03.031
Copyright Status
Unknown
Socpus ID
84878010829 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/84878010829
STARS Citation
Ardila, Orlando J.; Divo, Eduardo A.; Moslehy, Faissal A.; Rab, George T.; and Kassab, Alain J., "Mechanics Of Hip Dysplasia Reductions In Infants Using The Pavlik Harness: A Physics-Based Computational Model" (2013). Scopus Export 2010-2014. 7014.
https://stars.library.ucf.edu/scopus2010/7014