Title

Polymeric Luminescent Zn(Ii) And Cd(Ii) Dicarboxylates Decorated By Oxime Ligands: Tuning The Dimensionality And Adsorption Capacity

Abstract

Ten Zn(II) and Cd(II) metal-organic materials were synthesized and studied by the X-ray method. Among these 10 structures, two represent binuclear clusters, and two are one-dimensional (1D) coordination polymers, while five are laminar two-dimensional (2D) solids and one is the three-dimensional (3D) framework. The investigation has been aimed at rational design of coordination polymers decorated by oxime ligands to increase the accessible adsorption area in these newly synthesized solids. The ligands used include three aliphatic dicarboxylic acids, HOOC-(CH2)n-COOH [n = 1, 2, 4 corresponding to malonic (H2mal), succinic (H2suc), and adipic (H2adi) acids], and three neutral oxime ligands [pyridine-2-aldoxime (2-pyao), pyridine-4-aldoxime (4-pyao), and 1,2-cyclohexanedionedioxime (Niox)]. These novel hybrid solids with the compositions [Zn2(suc)2(2-pyao)4] ·2H2O 1, [Cd2(suc)(2-pyao)4(H 2O)2][BF4]2 2, [Cd(suc)(2-pyao) 2]n 3, [Zn(mal)(4-pyao)(H2O)]n 4, [Cd(mal)(4-pyao)(H2O)]n 5, [Zn(suc)(4-pyao)]n 6, [Zn(adi)(4-pyao)2]n 7, {[Cd(adi)(4-pyao) 2]·dmf}n 8, [Zn(adi)(Niox)]n 9, and [Cd(adi)(Niox)]n 10 [dmf - N,N'2-dimethylformamide] demonstrate a variable class of coordination supramolecular architectures dictated by the distinctions in the metals' and oxime ligands' coordination capacities and preferences, and length and flexibility of the dicarboxylic linkers. The discrete aggregates 1 and 2 differ by the components' ratio and conformation of the bridging succinate anion; compounds 3 and 7 are 1D arrays, and compounds 4, 5, 6, 8, and 9 represent 2D layers of different topologies. Compound 10 is a 3D grid afforded by the concerted contribution of the longest in this series adipate anion, and the bigger atomic radius Cd(II) vs. Zn(II). The adsorptive properties of 7 and 9 are reported. For the laminar solid 9, the quantum chemical simulations of the adsorption capacity are in line with the experimental results. All new materials reveal dual green-blue wavelength emission in the solid state. © 2014 American Chemical Society.

Publication Date

8-6-2014

Publication Title

Crystal Growth and Design

Volume

14

Issue

8

Number of Pages

3935-3948

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1021/cg5005402

Socpus ID

84905686529 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84905686529

This document is currently not available here.

Share

COinS