Title
Nanoceria: Factors Affecting Its Pro- And Anti-Oxidant Properties
Abstract
Nanoceria redox properties are affected by particle size, particle shape, surface chemistry, and other factors, such as additives that coat the surface, local pH, and ligands that can participate in redox reactions. Each CeO2 crystal facet has a different chemistry, surface energy, and surface reactivity. Unlike nanoceria's industrial catalytic applications, biological and environment exposures are characterized by high water activity values and relatively high oxygen activity values. Electrochemical data show that oxygen levels, pH, and redox species affect its phase equilibria for solution and dissolution. However, not much is known about how the many and varied redox ligands in environmental and biological systems might affect nanoceria's redox behaviour, the effects of coated surfaces on redox rates and mechanisms, and whether the ceria solid phase undergoes dissolution at physiologically relevant pH and oxygen levels. Research that could answer these questions would improve our understanding of the links between nanoceria's redox performance and its morphology and environmental conditions in the local milieu.
Publication Date
10-1-2014
Publication Title
Environmental Science: Nano
Volume
1
Issue
5
Number of Pages
429-444
Document Type
Review
Personal Identifier
scopus
DOI Link
https://doi.org/10.1039/c4en00105b
Copyright Status
Unknown
Socpus ID
84922509169 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/84922509169
STARS Citation
Grulke, Eric; Reed, Kenneth; Beck, Matthew; Huang, Xing; and Cormack, Alastair, "Nanoceria: Factors Affecting Its Pro- And Anti-Oxidant Properties" (2014). Scopus Export 2010-2014. 8098.
https://stars.library.ucf.edu/scopus2010/8098