Title

Different Interaction Modes Of Biomolecules With Citrate-Capped Gold Nanoparticles

Keywords

dynamic light scattering; gold nanoparticle; hyaluronan; polysaccharides; protein corona; protein-nanoparticle interaction

Abstract

In this study, we investigated the interaction between five biorelevant molecules and citrate-capped gold nanoparticles using dynamic light scattering, Χ-potential analysis, UV-vis absorption spectroscopy, and transmission electron microscopy. The five biomolecules are bovine serum albumin (BSA), two immunoglobulin G (IgG) proteins, immunoglobulin M (IgM), and a polysaccharide molecule, hyaluronan. BSA, IgG, and IgM are high abundance proteins in blood. Hyaluronan is a major component of the extracellular matrix. An abnormal level of hyaluronan in blood is associated with a number of medical conditions including rheumatoid arthritis and malignancy. Five different interaction modes were observed from these molecules. While BSA and IgM interact with the gold nanoparticles by forming electrostatic interactions with the citrate ligands, IgG and hyaluronan adsorb to the nanoparticle metal core by displacing the citrate ligands. BSA, rabbit IgG, and hyaluronan formed a stable monolayer on the nanoparticle surface. Human IgG and IgM caused nanoparticle cluster formation upon interacting with the gold nanoparticles. For the first time, we discovered that hyaluronan, a highly negatively charged polyglycosaminoglycan, exhibits an exceptionally strong affinity toward the citrate-gold nanoparticles. It can effectively compete with IgG to adsorb to the gold nanoparticles. This finding has exciting implications for future research: the molecular composition of a protein corona formed on a nanoparticle surface upon mixing the nanoparticle with blood or other biological fluids may vary according to the pathological conditions of individuals, and the analysis of these compositions could potentially lead to new biomarker discovery with diagnostic applications.

Publication Date

12-10-2014

Publication Title

ACS Applied Materials and Interfaces

Volume

6

Issue

23

Number of Pages

21184-21192

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1021/am506112u

Socpus ID

84917708841 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84917708841

This document is currently not available here.

Share

COinS