Title
A Weighted Support Vector Machine Method For Control Chart Pattern Recognition
Keywords
Classification; Control chart; Imbalanced data; Pattern recognition; Quality control; Weighted support vector machine
Abstract
Manual inspection and evaluation of quality control data is a tedious task that requires the undistracted attention of specialized personnel. On the other hand, automated monitoring of a production process is necessary, not only for real time product quality assessment, but also for potential machinery malfunction diagnosis. For this reason, control chart pattern recognition (CCPR) methods have received a lot of attention over the last two decades. Current state-of-the-art control monitoring methodology includes K charts which are based on support vector machines (SVM). Although K charts have some profound benefits, their performance deteriorate when the learning examples for the normal class greatly outnumbers the ones for the abnormal class. Such problems are termed imbalanced and represent the vast majority of the real life control pattern classification problems. Original SVM demonstrate poor performance when applied directly to these problems. In this paper, we propose the use of weighted support vector machines (WSVM) for automated process monitoring and early fault diagnosis. We show the benefits of WSVM over traditional SVM, compare them under various fault scenarios. We evaluate the proposed algorithm in binary and multi-class environments for the most popular abnormal quality control patterns as well as a real application from wafer manufacturing industry. © 2014 Elsevier Ltd. All rights reserved.
Publication Date
4-1-2014
Publication Title
Computers and Industrial Engineering
Volume
70
Issue
1
Number of Pages
134-149
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1016/j.cie.2014.01.014
Copyright Status
Unknown
Socpus ID
84894274728 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/84894274728
STARS Citation
Xanthopoulos, Petros and Razzaghi, Talayeh, "A Weighted Support Vector Machine Method For Control Chart Pattern Recognition" (2014). Scopus Export 2010-2014. 8596.
https://stars.library.ucf.edu/scopus2010/8596