Title
Waddling And Toddling: The Biomechanical Effects Of An Immature Gait
Keywords
Femur; Ground reaction force; Shape; Walking
Abstract
Femoral shape changes during the course of human growth, transitioning from a subcircular tube to a teardrop-shaped diaphysis with a posterior pilaster. Differences between immature and mature bipedalism and body shape may generate different loads, which, in turn, may influence femoral modeling and remodeling during the course of the human lifespan. This study uses two different approaches to evaluate the hypotheses that differences in gait between young and mature walkers result in differences in ground reaction forces (GRFs) and that the differences in loading regimes between young children and adults will be reflected in the geometric structure of the midshaft femur. The results of this analysis indicate that GRFs differ between young walkers and adults in that normalized mediolateral (ML) forces are significantly higher in younger age groups. In addition, these differences between children and adults in the relative level of ML bending force are reflected in changes in femoral geometry during growth. During the earlier stages of human development, immature femoral diaphyses are heavily reinforced in approximately ML plane. The differences in gait between mature and immature walkers, and hence the differences in femoral shape, are likely partially a product of a minimal bicondylar angle and relatively broad body in young children. © 2010 Wiley-Liss, Inc.
Publication Date
9-1-2010
Publication Title
American Journal of Physical Anthropology
Volume
143
Issue
1
Number of Pages
52-61
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1002/ajpa.21289
Copyright Status
Unknown
Socpus ID
77956096413 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/77956096413
STARS Citation
Cowgill, Libby W.; Warrener, Anna; Pontzer, Herman; and Ocobock, Cara, "Waddling And Toddling: The Biomechanical Effects Of An Immature Gait" (2010). Scopus Export 2010-2014. 896.
https://stars.library.ucf.edu/scopus2010/896