Title
A Mixed Linear Quadratic Optimal Control Problem With A Controlled Time Horizon
Keywords
Maximum principle; Mixed linear-quadratic optimal control; Optimal stopping; Riccati equation
Abstract
A mixed linear quadratic (MLQ) optimal control problem is considered. The controlled stochastic system consists of two diffusion processes which are in different time horizons. There are two control actions: a standard control action u(·) enters the drift and diffusion coefficients of both state equations, and a stopping time τ, a possible later time after the first part of the state starts, at which the second part of the state is initialized with initial condition depending on the first state. A motivation of MLQ problem from a two-stage project management is presented. It turns out that solving an MLQ problem is equivalent to sequentially solve a random-duration linear quadratic (RLQ) problem and an optimal time (OT) problem associated with Riccati equations. In particular, the optimal cost functional can be represented via two coupled stochastic Riccati equations. Some optimality conditions for MLQ problem is therefore obtained using the equivalence among MLQ, RLQ and OT problems. In case of seeking the optimal time in the family of deterministic times (even through somewhat restrictive, such seeking is still reasonable from practical standpoint), we give a more explicit characterization of optimal actions. © 2014 Springer Science+Business Media New York.
Publication Date
1-1-2014
Publication Title
Applied Mathematics and Optimization
Volume
70
Issue
1
Number of Pages
29-59
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1007/s00245-013-9233-1
Copyright Status
Unknown
Socpus ID
84905370135 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/84905370135
STARS Citation
Huang, Jianhui; Li, Xun; and Yong, Jiongmin, "A Mixed Linear Quadratic Optimal Control Problem With A Controlled Time Horizon" (2014). Scopus Export 2010-2014. 9461.
https://stars.library.ucf.edu/scopus2010/9461