Title
Wiener'S Lemma For Singular Integral Operators Of Bessel Potential Type
Keywords
Banach algebra; Bessel potential; Integral operator; Muckenhoupt weight; Spectra; Wiener's lemma
Abstract
In this paper, we introduce an algebra of singular integral operators containing Bessel potentials of positive order, and show that the corresponding unital Banach algebra is an inverse-closed Banach subalgebra of B(Lqw), the Banach algebra of all bounded operators on the weighted space Lqw, for all 1 ≤ q < ∞ and Muckenhoupt Aq-weights w. © 2013 Springer-Verlag Wien.
Publication Date
1-1-2014
Publication Title
Monatshefte fur Mathematik
Volume
173
Issue
1
Number of Pages
35-54
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1007/s00605-013-0575-1
Copyright Status
Unknown
Socpus ID
84892445226 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/84892445226
STARS Citation
Fang, Qiquan; Shin, Chang Eon; and Sun, Qiyu, "Wiener'S Lemma For Singular Integral Operators Of Bessel Potential Type" (2014). Scopus Export 2010-2014. 9753.
https://stars.library.ucf.edu/scopus2010/9753