Title

Wiener'S Lemma For Singular Integral Operators Of Bessel Potential Type

Keywords

Banach algebra; Bessel potential; Integral operator; Muckenhoupt weight; Spectra; Wiener's lemma

Abstract

In this paper, we introduce an algebra of singular integral operators containing Bessel potentials of positive order, and show that the corresponding unital Banach algebra is an inverse-closed Banach subalgebra of B(Lqw), the Banach algebra of all bounded operators on the weighted space Lqw, for all 1 ≤ q < ∞ and Muckenhoupt Aq-weights w. © 2013 Springer-Verlag Wien.

Publication Date

1-1-2014

Publication Title

Monatshefte fur Mathematik

Volume

173

Issue

1

Number of Pages

35-54

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1007/s00605-013-0575-1

Socpus ID

84892445226 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84892445226

This document is currently not available here.

Share

COinS