Title
High Spectral Contrast Filtering Produced By Multiple Pass Reflections From Paired Bragg Gratings In Ptr Glass
Keywords
Holography; Volume Bragg gratings
Abstract
The properties of multiple reflections from narrow bandwidth reflection Bragg gratings are presented. The use of multiple reflections serves to increase the suppression ratio of the out-of-band spectral content such that contributions of grating sidelobes can be mitigated. The result is a device which retains spectral and angular selectivity in a single high efficiency diffraction order but reshapes spectral/angular response to achieve higher signal to noise ratios (SNR). The material for recording these high suppression devices is photo-thermo-refractive (PTR) glass. PTR is a highly homogeneous photosensitive glass with features such as low losses and high laser damage threshold. It has recently been used with good success to record permanent volume Bragg gratings with high efficiency and narrow band selectivity for use in laser cavities. Multiple reflections from the grating surface are achieved using several different arrangements. The multiple pass grating reflections are demonstrated and compared to the performance of a single reflection from a volume Bragg grating.
Publication Date
1-1-2014
Publication Title
Proceedings of SPIE - The International Society for Optical Engineering
Volume
8982
Document Type
Article; Proceedings Paper
Personal Identifier
scopus
DOI Link
https://doi.org/10.1117/12.2039700
Copyright Status
Unknown
Socpus ID
84901049823 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/84901049823
STARS Citation
Ott, Daniel; Segall, Marc; Divliansky, Ivan; Venus, George; and Glebov, Leonid, "High Spectral Contrast Filtering Produced By Multiple Pass Reflections From Paired Bragg Gratings In Ptr Glass" (2014). Scopus Export 2010-2014. 9868.
https://stars.library.ucf.edu/scopus2010/9868