Cavitation Behind A Circular Micro Pillar

Keywords

Cavitation inception number; Hydrodynamic cavitation; Micro pillar; Spectral analysis

Abstract

An experimental study of hydrodynamic cavitation was conducted in a rectangular microchannel with a pillar. Distilled water was used as working fluid in an open fluid loop, and cavitation was obtained by applying a range of pressure differences between inlet and outlet tanks. High speed camera captured the flow patterns from inception to fully developed cavitating flow. A minimum delay of 10 min in the formation of cavitation was recorded in all experiments, which is due to the stochastic nature of phenomenon. Cavitation inception conditions were obtained in terms of the cavitation numbers, and a flow map was developed for subsequent cavitation flow. By analyzing time series of gray scale intensity of pixels inside the cavity, dominant frequencies were identified. Transient single phase numerical simulations were performed to gain a better understanding of the flow field in the microchannel, verify pressure measurements, and to relate the separation angle to the attached cavitation angle around the pillar. Emphasis was placed on characterizing the wake region downstream the pillar as it is closely related to the occurrence of the cavitation phenomena.

Publication Date

1-1-2018

Publication Title

International Journal of Multiphase Flow

Volume

98

Number of Pages

67-78

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1016/j.ijmultiphaseflow.2017.08.012

Socpus ID

85033673653 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/85033673653

This document is currently not available here.

Share

COinS