Disorder-Induced High-Quality Wavefront In An Anderson Localizing Optical Fiber

Abstract

High-quality coherent wavefronts are extremely useful in optical communications and lasers. Disorder is usually considered as a source of noise and deviation from ideal designs for generating high-quality beams in photonic devices. Here, we demonstrate that strong disorder can be exploited to obtain high-quality wavefronts thanks to the Anderson localization phenomenon. Our analysis on a transverse Anderson localizing optical fiber reveals that a considerable number of the guided modes have M2 < 2 values. These high-quality modes are distributed across the transverse profile of the disordered fiber and can be excited without requiring sophisticated spatial light modulations at the input facet. The results show the potential of such fibers for novel applications in fiber lasers and nonlinear devices, where a high beam quality is desirable.

Publication Date

8-20-2018

Publication Title

Optica

Volume

5

Issue

8

Number of Pages

984-987

Document Type

Letter

Personal Identifier

scopus

DOI Link

https://doi.org/10.1364/OPTICA.5.000984

Socpus ID

85052210461 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/85052210461

This document is currently not available here.

Share

COinS