Improving Efficiency Of Multicrystalline Silicon And Cigs Solar Cells By Incorporating Metal Nanoparticles

Keywords

Au and Ag nanoparticles; CIGS solar cells; Multicrystalline silicon; Spin coating

Abstract

This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients.

Publication Date

1-1-2015

Publication Title

Materials

Volume

8

Issue

10

Number of Pages

6761-6771

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.3390/ma8105337

Socpus ID

84946219488 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84946219488

This document is currently not available here.

Share

COinS