Ade Tailed Un Certainty Analysis Of Adiabatic Film Cooling Effectiveness Measurements Using Pressure Sensitive Paint

Abstract

Pressure sensitive paint (PSP) can be a powerful tool in measuring the adiabatic film cooling effectiveness. There are two distinct sources of error for this measurement technique; the ability to experimentally obtain the data and the validity of the heat and mass transfer analogy for the problem being studied. This paper will assess the experimental aspect of this PSP measurement specifically for film cooling applications. Experiments are conducted in an effort to quantifiably bound expected errors associated with temperature non-uniformities in testing and photo-degradation effects. Results show that if careful experimental procedures are put in place, both of these effects can be maintained to have less than 0.022 impact on effectiveness. Through accurate semi-in-situ calibration down to 4% atmospheric pressure, the near-hole distribution of effectiveness is measured with high accuracy. PSP calibrations are performed for multiple coupons, over multiple days. In addition, to reach a partial pressure of 0 the calibration vessel was purged of all air by flowing CO2. The primary contribution of this paper lies in the uncertainty analysis performed on the PSP measurement technique. A thorough uncertainty analysis is conducted and described, in order to completely understand the presented measurements and any shortcomings of the PSP technique. This quantification results in larger, albeit more realistic, values of uncertainty, and helps provide a better understanding of film cooling effectivenes s meas urements taken us ing the PSP technique. The presented uncertainty analysis takes into account all random error sources associated with sampling and calibration, from intensities to effectiveness.

Publication Date

1-1-2015

Publication Title

Proceedings of the ASME Turbo Expo

Volume

5B

Document Type

Article; Proceedings Paper

Personal Identifier

scopus

DOI Link

https://doi.org/10.1115/GT2015-42707

Socpus ID

84954357597 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84954357597

This document is currently not available here.

Share

COinS