Behavioral Modeling Based On Probabilistic Finite Automata: An Empirical Study
Keywords
Ambient intelligence; Behavioral cloning; Behavioral recognition; Learning from observation; Probabilistic finite automaton; Virtual agents
Abstract
Imagine an agent that performs tasks according to different strategies. The goal of Behavioral Recognition (BR) is to identify which of the available strategies is the one being used by the agent, by simply observing the agent’s actions and the environmental conditions during a certain period of time. The goal of Behavioral Cloning (BC) is more ambitious. In this last case, the learner must be able to build a model of the behavior of the agent. In both settings, the only assumption is that the learner has access to a training set that contains instances of observed behavioral traces for each available strategy. This paper studies a machine learning approach based on Probabilistic Finite Automata (PFAs), capable of achieving both the recognition and cloning tasks. We evaluate the performance of PFAs in the context of a simulated learning environment (in this case, a virtual Roomba vacuum cleaner robot), and compare it with a collection of other machine learning approaches.
Publication Date
7-1-2016
Publication Title
Sensors (Switzerland)
Volume
16
Issue
7
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.3390/s16070958
Copyright Status
Unknown
Socpus ID
84976292151 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/84976292151
STARS Citation
Tîrnăucă, Cristina; Montaña, José L.; Ontañón, Santiago; González, Avelino J.; and Pardo, Luis M., "Behavioral Modeling Based On Probabilistic Finite Automata: An Empirical Study" (2016). Scopus Export 2015-2019. 2293.
https://stars.library.ucf.edu/scopus2015/2293