Quantifying The Degradation Of Tnt And Rdx In A Saline Environment With And Without Uv-Exposure

Keywords

Degradation; Explosives; Mass Spectrometry; Saltwater

Abstract

Terrorist attacks in a maritime setting, such as the bombing of the USS Cole in 2000, or the detection of underwater mines, require the development of proper protocols to collect and analyse explosive material from a marine environment. In addition to proper analysis of the explosive material, protocols must also consider the exposure of the material to potentially deleterious elements, such as UV light and salinity, time spent in the environment, and time between storage and analysis. To understand how traditional explosives would be affected by such conditions, saline solutions of explosives were exposed to natural and artificial sunlight. Degradation of the explosives over time was then quantified using negative chemical ionization gas chromatography mass spectrometry (GC/NCI-MS). Two explosives, trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX), were exposed to different aqueous environments and light exposures with salinities ranging from freshwater to twice the salinity of ocean water. Solutions were then aged for up to 6 months to simulate different conditions the explosives may be recovered from. Salinity was found to have a negligible impact on the degradation of both RDX and TNT. RDX was stable in solutions of all salinities while TNT solutions degraded regardless of salinity. Solutions of varying salinities were also exposed to UV light, where accelerated degradation was seen for both explosives. Potential degradation products of TNT were identified using electrospray ionization mass spectrometry (ESI-MS), and correspond to proposed degradation products discussed in previously published works [1].

Publication Date

6-1-2015

Publication Title

Forensic Science International

Volume

251

Number of Pages

124-131

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1016/j.forsciint.2015.04.002

Socpus ID

84928116784 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84928116784

This document is currently not available here.

Share

COinS