Atlas-Based Rib-Bone Detection In Chest X-Rays
Keywords
Chest X-rays; Rib bone extraction
Abstract
This paper investigates using rib-bone atlases for automatic detection of rib-bones in chest X-rays (CXRs). We built a system that takes patient X-ray and model atlases as input and automatically computes the posterior rib borders with high accuracy and efficiency. In addition to conventional atlas, we propose two alternative atlases: (i) automatically computed rib bone models using Computed Tomography (CT) scans, and (ii) dual energy CXRs. We test the proposed approach with each model on 25 CXRs from the Japanese Society of Radiological Technology (JSRT) dataset and another 25 CXRs from the National Library of Medicine CXR dataset. We achieve an area under the ROC curve (AUC) of about 95% for Montgomery and 91% for JSRT datasets. Using the optimal operating point of the ROC curve, we achieve a segmentation accuracy of 88.91 ± 1.8% for Montgomery and 85.48 ± 3.3% for JSRT datasets. Our method produces comparable results with the state-of-the-art algorithms. The performance of our method is also excellent on challenging X-rays as it successfully addressed the rib-shape variance between patients and number of visible rib-bones due to patient respiration.
Publication Date
7-1-2016
Publication Title
Computerized Medical Imaging and Graphics
Volume
51
Number of Pages
32-39
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1016/j.compmedimag.2016.04.002
Copyright Status
Unknown
Socpus ID
84964917657 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/84964917657
STARS Citation
Candemir, Sema; Jaeger, Stefan; Antani, Sameer; Bagci, Ulas; and Folio, Les R., "Atlas-Based Rib-Bone Detection In Chest X-Rays" (2016). Scopus Export 2015-2019. 3109.
https://stars.library.ucf.edu/scopus2015/3109