Atlas-Based Rib-Bone Detection In Chest X-Rays

Keywords

Chest X-rays; Rib bone extraction

Abstract

This paper investigates using rib-bone atlases for automatic detection of rib-bones in chest X-rays (CXRs). We built a system that takes patient X-ray and model atlases as input and automatically computes the posterior rib borders with high accuracy and efficiency. In addition to conventional atlas, we propose two alternative atlases: (i) automatically computed rib bone models using Computed Tomography (CT) scans, and (ii) dual energy CXRs. We test the proposed approach with each model on 25 CXRs from the Japanese Society of Radiological Technology (JSRT) dataset and another 25 CXRs from the National Library of Medicine CXR dataset. We achieve an area under the ROC curve (AUC) of about 95% for Montgomery and 91% for JSRT datasets. Using the optimal operating point of the ROC curve, we achieve a segmentation accuracy of 88.91 ± 1.8% for Montgomery and 85.48 ± 3.3% for JSRT datasets. Our method produces comparable results with the state-of-the-art algorithms. The performance of our method is also excellent on challenging X-rays as it successfully addressed the rib-shape variance between patients and number of visible rib-bones due to patient respiration.

Publication Date

7-1-2016

Publication Title

Computerized Medical Imaging and Graphics

Volume

51

Number of Pages

32-39

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1016/j.compmedimag.2016.04.002

Socpus ID

84964917657 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84964917657

This document is currently not available here.

Share

COinS