Effects Of Salinity And Inundation On Microbial Community Structure And Function In A Mangrove Peat Soil

Keywords

Coastal wetland; Mangrove; Peat; Salinity; Sea level rise

Abstract

Shifts in microbial community function and structure can be indicators of environmental stress and ecosystem change in wetland soils. This study evaluated the effects of increased salinity, increased inundation, and their combination, on soil microbial function (enzyme activity) and structure (phospholipid fatty acid (PLFA) signatures and terminal restriction fragment length polymorphisms (T-RFLP) profiles) in a brackish mangrove peat soil using tidal mesocosms (Everglades, Florida, USA). Increased tidal inundation resulted in reduced soil enzyme activity, especially alkaline phosphatase, an increase in the abundance and diversity of prokaryotes, and a decline in number of eukaryotes. The community composition of less abundant bacteria (T-RFLPs comprising 0.3–1 % of total fluorescence) also shifted as a result of increased inundation under ambient salinity. Several key biogeochemical indicators (oxidation-reduction potential, CO2 flux, porewater NH4+, and dissolved organic carbon) correlated with measured microbial parameters and differed with inundation level. This study indicates microbial function and composition in brackish soil is more strongly impacted by increased inundation than increased salinity. The observed divergence of microbial indicators within a short time span (10-weeks) demonstrates their usefulness as an early warning signal for shifts in coastal wetland ecosystems due to sea level rise stressors.

Publication Date

4-1-2016

Publication Title

Wetlands

Volume

36

Issue

2

Number of Pages

361-371

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1007/s13157-016-0745-8

Socpus ID

84957632475 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/84957632475

This document is currently not available here.

Share

COinS