A Holistic Approach For Predicting Links In Coevolving Multiplex Networks
Abstract
Networks extracted from social media platforms frequently include multiple types of links that dynamically change over time; these links can be used to represent dyadic interactions such as economic transactions, communications, and shared activities. Organizing this data into a dynamic multiplex network, where each layer is composed of a single edge type linking the same underlying vertices, can reveal interesting cross-layer interaction patterns. In coevolving networks, links in one layer result in an increased probability of other types of links forming between the same node pair. Hence we believe that a holistic approach in which all the layers are simultaneously considered can outperform a factored approach in which link prediction is performed separately in each layer. This paper introduces a comprehensive framework, MLP (Multiplex Link Prediction), in which link existence likelihoods for the target layer are learned from the other network layers. These likelihoods are used to reweight the output of a single layer link prediction method that uses rank aggregation to combine a set of topological metrics. Our experiments show that our reweighting procedure outperforms other methods for fusing information across network layers.
Publication Date
11-21-2016
Publication Title
Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016
Number of Pages
1079-1086
Document Type
Article; Proceedings Paper
Personal Identifier
scopus
DOI Link
https://doi.org/10.1109/ASONAM.2016.7752375
Copyright Status
Unknown
Socpus ID
85006790584 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/85006790584
STARS Citation
Hajibagheri, Alireza; Sukthankar, Gita; and Lakkaraju, Kiran, "A Holistic Approach For Predicting Links In Coevolving Multiplex Networks" (2016). Scopus Export 2015-2019. 4199.
https://stars.library.ucf.edu/scopus2015/4199