Title

Products And Pathways Of Aldehydes Oxidation In The Negative Temperature Coefficient Region

Abstract

Aldehydes are major intermediates in oxidation and pyrolysis of hydrocarbons and particularly biofuels. While the high temperature oxidation chemistry of C3-C5 aldehydes have been studied in the literature, a comprehensive low temperature kinetics remains unaddressed. In this work, acetaldehyde, propanal, and 2-propenal (acrolein) oxidation was investigated at lowerature combustion condition (500-700 K). The isomer-specific product concentrations as well as the time-resolved profiles were studied using Sandia's multiplexed photoionization mass spectroscopy (MPIMS) with synchrotron radiation from the advanced light source (ALS). The laser-pulsed photolysis generates chlorine atoms which react with aldehydes to form the parent radicals. In the presence of excess oxygen, these radicals react with O2 and form RO2 radicals. The temperature-dependent product yields are determined for 500 K to 700 K and the competition between the channels contributing to the formation of each product is discussed. In acetaldehyde oxidation, the formation of the main products is associated with HO2 elimination channel from QOOH or direct H atom elimination from the parent radicals. In propanal oxidation, the most intensive signal peak was associated with acetaldehyde (m/z = 44) which was formed through the reaction of α′-R with O2.The α′-RO2 intermediate decomposes to acetaldehyde+OH+CO via Waddington mechanism and formation of five-member ring transition state. In 2-propenal oxidation, the unsaturated radical produced from α-R reacts with O2 to form the primary products.

Publication Date

1-1-2017

Publication Title

Journal of Energy Resources Technology, Transactions of the ASME

Volume

139

Issue

1

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1115/1.4033589

Socpus ID

85050580717 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/85050580717

This document is currently not available here.

Share

COinS