A Transactional Correctness Tool For Abstract Data Types

Keywords

Concurrency; Correctness verification; Transactional data structure

Abstract

Transactional memory simplifies multiprocessor programming by providing the guarantee that a sequential block of code in the form of a transaction will exhibit atomicity and isolation. Transactional data structures offer the same guarantee to concurrent data structures by enabling the atomic execution of a composition of operations. The concurrency control of transactional memory systems preserves atomicity and isolation by detecting read/write conflicts among multiple concurrent transactions. State-of-the-art transactional data structures improve on this concurrency control protocol by providing explicit transaction-level synchronization for only non-commutative operations. Since read/write conflicts are handled by thread-level concurrency control, the correctness of transactional data structures cannot be evaluated according to the read/write histories. This presents a challenge for existing correctness verification techniques for transactional memory, because correctness is determined according to the transitions taken by the transactions in the presence of read/write conflicts. In this article, we present Transactional Correctness tool for Abstract Data Types (TxC-ADT), the first tool that can check the correctness of transactional data structures. TxC-ADT elevates the standard definitions of transactional correctness to be in terms of an abstract data type, an essential aspect for checking correctness of transactions that synchronize only for high-level semantic conflicts. To accommodate a diverse assortment of transactional correctness conditions, we present a technique for defining correctness as a happens-before relation. Defining a correctness condition in this manner enables an automated approach in which correctness is evaluated by generating and analyzing a transactional happens-before graph during model checking. A transactional happens-before graph is maintained on a per-thread basis, making our approach applicable to transactional correctness conditions that do not enforce a total order on a transactional execution. We demonstrate the practical applications of TxC-ADT by checking Lock Free Transactional Transformation and Transactional Data Structure Libraries for serializability, strict serializability, opacity, and causal consistency

Publication Date

11-1-2017

Publication Title

ACM Transactions on Architecture and Code Optimization

Volume

14

Issue

4

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1145/3148964

Socpus ID

85041442761 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/85041442761

This document is currently not available here.

Share

COinS