On Correlated-Noise Analyses Applied To Exoplanet Light Curves
Keywords
methods: statistical; planets and satellites: fundamental parameters; techniques: photometric
Abstract
Time-correlated noise is a significant source of uncertainty when modeling exoplanet light-curve data. A correct assessment of correlated noise is fundamental to determine the true statistical significance of our findings. Here, we review three of the most widely used correlated-noise estimators in the exoplanet field, the time-averaging, residual-permutation, and wavelet-likelihood methods. We argue that the residual-permutation method is unsound in estimating the uncertainty of parameter estimates. We thus recommend to refrain from this method altogether. We characterize the behavior of the time averaging's rms-versus-bin-size curves at bin sizes similar to the total observation duration, which may lead to underestimated uncertainties. For the wavelet-likelihood method, we note errors in the published equations and provide a list of corrections. We further assess the performance of these techniques by injecting and retrieving eclipse signals into synthetic and real Spitzer light curves, analyzing the results in terms of the relative-accuracy and coverage-fraction statistics. Both the time-averaging and wavelet-likelihood methods significantly improve the estimate of the eclipse depth over a white-noise analysis (a Markov-chain Monte Carlo exploration assuming uncorrelated noise). However, the corrections are not perfect; when retrieving the eclipse depth from Spitzer data sets, these methods covered the true (injected) depth within the 68% credible region in only ∼45%-65% of the trials. Lastly, we present our open-source model-fitting tool, Multi-Core Markov-Chain Monte Carlo (MC3). This package uses Bayesian statistics to estimate the best-fitting values and the credible regions for the parameters for a (user-provided) model. MC3 is a Python/C code, available at https://github.com/pcubillos/MCcubed.
Publication Date
1-1-2017
Publication Title
Astronomical Journal
Volume
153
Issue
1
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.3847/1538-3881/153/1/3
Copyright Status
Unknown
Socpus ID
85009142111 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/85009142111
STARS Citation
Cubillos, Patricio; Harrington, Joseph; Loredo, Thomas J.; Lust, Nate B.; and Blecic, Jasmina, "On Correlated-Noise Analyses Applied To Exoplanet Light Curves" (2017). Scopus Export 2015-2019. 4844.
https://stars.library.ucf.edu/scopus2015/4844