Lattice Topology Dictates Photon Statistics

Abstract

Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: The field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.

Publication Date

12-1-2017

Publication Title

Scientific Reports

Volume

7

Issue

1

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1038/s41598-017-09236-8

Socpus ID

85027885053 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/85027885053

This document is currently not available here.

Share

COinS