Experimental And Computational Studies Of Sound Transmission In A Branching Airway Network Embedded In A Compliant Viscoelastic Medium
Abstract
Breath sounds are often used to aid in the diagnosis of pulmonary disease. Mechanical and numerical models could be used to enhance our understanding of relevant sound transmission phenomena. Sound transmission in an airway mimicking phantom was investigated using a mechanical model with a branching airway network embedded in a compliant viscoelastic medium. The Horsfield self-consistent model for the bronchial tree was adopted to topologically couple the individual airway segments into the branching airway network. The acoustics of the bifurcating airway segments were measured by microphones and calculated analytically. Airway phantom surface motion was measured using scanning laser Doppler vibrometry. Finite element simulations of sound transmission in the airway phantom were performed. Good agreement was achieved between experiments and simulations. The validated computational approach can provide insight into sound transmission simulations in real lungs.
Publication Date
3-17-2015
Publication Title
Journal of Sound and Vibration
Volume
339
Number of Pages
215-229
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1016/j.jsv.2014.11.026
Copyright Status
Unknown
Socpus ID
84919884270 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/84919884270
STARS Citation
Dai, Zoujun; Peng, Ying; Mansy, Hansen A.; Sandler, Richard H.; and Royston, Thomas J., "Experimental And Computational Studies Of Sound Transmission In A Branching Airway Network Embedded In A Compliant Viscoelastic Medium" (2015). Scopus Export 2015-2019. 537.
https://stars.library.ucf.edu/scopus2015/537