Piezospectroscopic Evaluation And Damage Identification For Thermal Barrier Coatings Subjected To Simulated Engine Environments
Keywords
Damage identification; Piezospectroscopy; Thermal barrier coatings; Thermal gradient mechanical load
Abstract
The application of high temperature ceramic coatings has enabled aircraft and power generation turbines to run at higher inlet temperatures for greater efficiency. Their use extends the lifetime of the superalloy blades that bear thermal gradients and mechanical loads during operation. In this work, ex-situ photo-luminescence spectroscopy was conducted to investigate the stresses within the thermally grown oxide of a thermal barrier coated tubular sample following complex realistic conditions, such as induced thermal gradients, and long duration aging. The resulting high spatial resolution stress contour maps highlight the development of the thermally grown oxide in response to the complex conditions. The outcomes highlight both the role of the aging process and the oxide growth's influence on the stress profile which varies spatially across the specimen. The results further provide early detection of micro-damaged zones in the oxide layer nondestructively. Improving the understanding of the coating system's response to loading conditions will allow for more accurate system modeling and early detection and monitoring of damage zones, which is critical for improving efficiency and longevity of aircraft and power generation turbines.
Publication Date
8-25-2017
Publication Title
Surface and Coatings Technology
Volume
323
Number of Pages
30-38
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1016/j.surfcoat.2016.09.057
Copyright Status
Unknown
Socpus ID
84992036207 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/84992036207
STARS Citation
Manero, Albert; Selimov, Alex; Fouliard, Quentin; Knipe, Kevin; and Wischek, Janine, "Piezospectroscopic Evaluation And Damage Identification For Thermal Barrier Coatings Subjected To Simulated Engine Environments" (2017). Scopus Export 2015-2019. 5685.
https://stars.library.ucf.edu/scopus2015/5685