Spectral Properties Of Generalized Eigenparameter Dependent Discrete Sturm-Liouville Type Equation
Keywords
Discrete equations; eigenparameter; eigenvalues; principal functions; spectral analysis; spectral singularities
Abstract
Let L denote the non-selfadjoint difference operator of second order with boundary condition generated in ℓ2 (ℕ) by (Figure presented.) (Figure presented.) where {an}n∈ℕ and {bn}n∈ℕ are complex sequences, γi, βi ∈ ℂ, i = 0, 1, 2, …, p and λ is a eigenparameter. Discussing the spectral properties of L, we investigate the Jost function, spectrum, the spectral singularities, and the properties of the principal vectors corresponding to the spectral singularities of L, if (Figure presented.).
Publication Date
7-10-2017
Publication Title
Quaestiones Mathematicae
Volume
40
Issue
4
Number of Pages
491-505
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.2989/16073606.2017.1299809
Copyright Status
Unknown
Socpus ID
85017420050 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/85017420050
STARS Citation
Koprubasi, Turhan and Mohapatra, R. N., "Spectral Properties Of Generalized Eigenparameter Dependent Discrete Sturm-Liouville Type Equation" (2017). Scopus Export 2015-2019. 5941.
https://stars.library.ucf.edu/scopus2015/5941