Coherence Pursuit: Fast, Simple, And Robust Principal Component Analysis
Keywords
Big Data; Outlier Detection; Robust PCA; Subspace Recovery; Unsupervised Learning
Abstract
This paper presents a remarkably simple, yet powerful, algorithm termed coherence pursuit (CoP) to robust principal component analysis (PCA). As inliers lie in a low-dimensional subspace and are mostly correlated, an inlier is likely to have strong mutual coherence with a large number of data points. By contrast, outliers either do not admit low-dimensional structures or form small clusters. In either case, an outlier is unlikely to bear strong resemblance to a large number of data points. Given that, CoP sets an outlier apart from an inlier by comparing their coherence with the rest of the data points. The mutual coherences are computed by forming the Gram matrix of the normalized data points. Subsequently, the sought subspace is recovered from the span of the subset of the data points that exhibit strong coherence with the rest of the data. As CoP only involves one simple matrix multiplication, it is significantly faster than the state-of-the-art robust PCA algorithms.We derive analytical performance guarantees for CoP under different models for the distributions of inliers and outliers in both noise-free and noisy settings. CoP is the first robust PCA algorithm that is simultaneously non-iterative, provably robust to both unstructured and structured outliers, and can tolerate a large number of unstructured outliers.
Publication Date
12-1-2017
Publication Title
IEEE Transactions on Signal Processing
Volume
65
Issue
23
Number of Pages
6260-6275
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1109/TSP.2017.2749215
Copyright Status
Unknown
Socpus ID
85029161360 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/85029161360
STARS Citation
Rahmani, Mostafa and Atia, George K., "Coherence Pursuit: Fast, Simple, And Robust Principal Component Analysis" (2017). Scopus Export 2015-2019. 6077.
https://stars.library.ucf.edu/scopus2015/6077