Finding Δ (Σ) For A Surface Σ Of Characteristic - 6 And - 7
Keywords
Class one; Class two; Critical graphs; Edge colorings; Surfaces
Abstract
For each surface Σ , we define Δ (Σ) = max{Δ(G)|G is a class two graph with maximum degree Δ (G) that can be embedded in Σ }. Hence Vizing’s Planar Graph Conjecture can be restated as Δ (Σ) = 5 if Σ is a sphere. For a surface Σ , if χ(Σ) ∈ { - 5 , - 4 , ⋯ , 0 } , Δ (Σ) is already known. In this paper, we show that Δ (Σ) = 10 if Σ is a surface of characteristic χ(Σ) ∈ { - 6 , - 7 }.
Publication Date
7-1-2017
Publication Title
Graphs and Combinatorics
Volume
33
Issue
4
Number of Pages
929-944
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1007/s00373-017-1780-9
Copyright Status
Unknown
Socpus ID
85020289776 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/85020289776
STARS Citation
Horacek, Katie; Luo, Rong; Miao, Zhengke; and Zhao, Yue, "Finding Δ (Σ) For A Surface Σ Of Characteristic - 6 And - 7" (2017). Scopus Export 2015-2019. 6292.
https://stars.library.ucf.edu/scopus2015/6292