Resonance Frequency Detuning With Application Towards Blade Mistuning

Abstract

This paper extends the Resonance Frequency Detuning vibration reduction approach by analyzing the performance in cases of turbomachinery blade mistuning. A lumped parameter mistuned blade model with included piezoelectric elements is utilized and an analytical solution for frequency sweep excitation is presented and validated using direct numerical integration. A Monte Carlo statistical analysis is then conducted to provide insight regarding vibration reduction performance over a range of parameters of interest such as the degree of blade mistuning, linear excitation sweep rate, damping ratio, and the difference between the open- and short-circuit stiffness states. Vibration reduction is shown to exist across all degrees of blade mistuning as well as the entire range of sweep rates tested. This vibration reduction performance is also maximized for systems with low inherent damping and large electromechanical coupling values.

Publication Date

1-1-2017

Publication Title

Proceedings of the ASME Turbo Expo

Volume

7B-2017

Document Type

Article; Proceedings Paper

Personal Identifier

scopus

DOI Link

https://doi.org/10.1115/GT2017-64973

Socpus ID

85028983285 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/85028983285

This document is currently not available here.

Share

COinS