Npiy : A Novel Partitioner For Improving Mapreduce Performance
Keywords
Data skew; Data transmission amount; Hadoop; Heterogeneous; Load balance; MapReduce; Parallel image processing
Abstract
MapReduce is an effective and widely-used framework for processing large datasets in parallel over a cluster of computers. Data skew, cluster heterogeneity, and network traffic are three issues that significantly affect the performance of MapReduce applications. However, the hash-based partitioner in the native Hadoop does not consider these factors. This paper proposes a new partitioner for Yarn (Hadoop 2.6.0), namely, NPIY, which adopts an innovative parallel sampling method to distribute intermediate data. The paper makes the following major contributions: (1) NPIY mitigates data skew in MapReduce applications; (2) NPIY considers the heterogeneity of computing resources to balance the loads among Reducers; (3) NPIY reduces the network traffic in the shuffle phase by trying to retain intermediate data on those nodes running both map and reduce tasks. Compared with the native Hadoop and other popular strategies, NPIY can reduce execution time by up to 41.66% and 58.68% in homogeneous and heterogeneous clusters, respectively. We further customize NPIY for parallel image processing, and the execution time has been improved by 28.8% compared with the native Hadoop.
Publication Date
6-1-2018
Publication Title
Journal of Visual Languages and Computing
Volume
46
Number of Pages
1-11
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1016/j.jvlc.2018.04.001
Copyright Status
Unknown
Socpus ID
85046466118 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/85046466118
STARS Citation
Lu, Wei; Chen, Lei; Wang, Liqiang; Yuan, Haitao; and Xing, Weiwei, "Npiy : A Novel Partitioner For Improving Mapreduce Performance" (2018). Scopus Export 2015-2019. 7318.
https://stars.library.ucf.edu/scopus2015/7318