Innovation Pursuit: A New Approach To The Subspace Clustering Problem
Abstract
This paper presents a new scalable approach, termed Innovation Pursuit (iPursuit), to the problem of subspace clustering. iPursuit rests on a new geometrical idea whereby each subspace is identified based on its novelty with respect to the other subspaces. The subspaces are identified consecutively by solving a series of simple linear optimization problems, each searching for a direction of innovation in the span of the data. A detailed mathematical analysis is provided establishing sufficient conditions for the proposed approach to correctly cluster the data points. Moreover, the proposed direction search approach can be integrated with spectral clustering to yield a new variant of spectral-clustering-based algorithms. Remarkably, the proposed approach can provably yield exact clustering even when the subspaces have significant intersections. The numerical simulations demonstrate that iPursuit can often outperform the state-of-the-art subspace clustering algorithms - more so for subspaces with significant intersections - Along with substantial reductions in computational complexity.
Publication Date
1-1-2017
Publication Title
34th International Conference on Machine Learning, ICML 2017
Volume
6
Number of Pages
4398-4406
Document Type
Article; Proceedings Paper
Personal Identifier
scopus
Copyright Status
Unknown
Socpus ID
85048528861 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/85048528861
STARS Citation
Rahmani, Mostafa and Atia, George, "Innovation Pursuit: A New Approach To The Subspace Clustering Problem" (2017). Scopus Export 2015-2019. 7390.
https://stars.library.ucf.edu/scopus2015/7390