A Fluid Membrane Enhances The Velocity Of Cargo Transport By Small Teams Of Kinesin-1

Abstract

Kinesin-1 (hereafter referred to as kinesin) is a major microtubule-based motor protein for plus-end-directed intracellular transport in live cells. While the single-molecule functions of kinesin are well characterized, the physiologically relevant transport of membranous cargos by small teams of kinesins remains poorly understood. A key experimental challenge remains in the quantitative control of the number of motors driving transport. Here we utilized "motile fraction" to overcome this challenge and experimentally accessed transport by a single kinesin through the physiologically relevant transport by a small team of kinesins. We used a fluid lipid bilayer to model the cellular membrane in vitro and employed optical trapping to quantify the transport of membrane-enclosed cargos versus traditional membrane-free cargos under identical conditions. We found that coupling motors via a fluid membrane significantly enhances the velocity of cargo transport by small teams of kinesins. Importantly, enclosing a cargo in a fluid lipid membrane did not impact single-kinesin transport, indicating that membrane-dependent velocity enhancement for team-based transport arises from altered interactions between kinesins. Our study demonstrates that membrane-based coupling between motors is a key determinant of kinesin-based transport. Enhanced velocity may be critical for fast delivery of cargos in live cells.

Publication Date

3-28-2018

Publication Title

Journal of Chemical Physics

Volume

148

Issue

12

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1063/1.5006806

Socpus ID

85040196933 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/85040196933

This document is currently not available here.

Share

COinS