3D Printing, Ink Casting And Micromachined Lamination (3D Piclμm): A Makerspace Approach To The Fabrication Of Biological Microdevices
Keywords
3D printing; Biological microdevices; Ink casting; Makerspace microfabrication; Microelectrode arrays (MEA); Microfluidics (MFs); Micromachined lamination; Microneedles (MNs)
Abstract
We present a novel benchtop-based microfabrication technology: 3D printing, ink casting, micromachined lamination (3D PICLμM) for rapid prototyping of lab-on-a-chip (LOC) and biological devices. The technology uses cost-effective, makerspace-type microfabrication processes, all of which are ideally suited for low resource settings, and utilizing a combination of these processes, we have demonstrated the following devices: (i) 2D microelectrode array (MEA) targeted at in vitro neural and cardiac electrophysiology, (ii) microneedle array targeted at drug delivery through a transdermal route and (iii) multi-layer microfluidic chip targeted at multiplexed assays for in vitro applications. The 3D printing process has been optimized for printing angle, temperature of the curing process and solvent polishing to address various biofunctional considerations of the three demonstrated devices. We have depicted that the 3D PICLμM process has the capability to fabricate 30 μm sized MEAs (average 1 kHz impedance of 140 kΩ with a double layer capacitance of 3 μF), robust and reliable microneedles having 30 μm radius of curvature and ~40 N mechanical fracture strength and microfluidic devices having 150 μm wide channels and 400 μm fluidic vias capable of fluid mixing and transmitted light microparticle visualization. We believe our 3D PICLμM is ideally suited for applications in areas such as electrophysiology, drug delivery, disease in a dish, organ on a chip, environmental monitoring, agricultural therapeutic delivery and genomic testing.
Publication Date
2-15-2018
Publication Title
Micromachines
Volume
9
Issue
2
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.3390/mi9020085
Copyright Status
Unknown
Socpus ID
85042219606 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/85042219606
STARS Citation
Kundu, Avra; Ausaf, Tariq; and Rajaraman, Swaminathan, "3D Printing, Ink Casting And Micromachined Lamination (3D Piclμm): A Makerspace Approach To The Fabrication Of Biological Microdevices" (2018). Scopus Export 2015-2019. 8261.
https://stars.library.ucf.edu/scopus2015/8261