Title

3D Printing, Ink Casting And Micromachined Lamination (3D Piclμm): A Makerspace Approach To The Fabrication Of Biological Microdevices

Keywords

3D printing; Biological microdevices; Ink casting; Makerspace microfabrication; Microelectrode arrays (MEA); Microfluidics (MFs); Micromachined lamination; Microneedles (MNs)

Abstract

We present a novel benchtop-based microfabrication technology: 3D printing, ink casting, micromachined lamination (3D PICLμM) for rapid prototyping of lab-on-a-chip (LOC) and biological devices. The technology uses cost-effective, makerspace-type microfabrication processes, all of which are ideally suited for low resource settings, and utilizing a combination of these processes, we have demonstrated the following devices: (i) 2D microelectrode array (MEA) targeted at in vitro neural and cardiac electrophysiology, (ii) microneedle array targeted at drug delivery through a transdermal route and (iii) multi-layer microfluidic chip targeted at multiplexed assays for in vitro applications. The 3D printing process has been optimized for printing angle, temperature of the curing process and solvent polishing to address various biofunctional considerations of the three demonstrated devices. We have depicted that the 3D PICLμM process has the capability to fabricate 30 μm sized MEAs (average 1 kHz impedance of 140 kΩ with a double layer capacitance of 3 μF), robust and reliable microneedles having 30 μm radius of curvature and ~40 N mechanical fracture strength and microfluidic devices having 150 μm wide channels and 400 μm fluidic vias capable of fluid mixing and transmitted light microparticle visualization. We believe our 3D PICLμM is ideally suited for applications in areas such as electrophysiology, drug delivery, disease in a dish, organ on a chip, environmental monitoring, agricultural therapeutic delivery and genomic testing.

Publication Date

2-15-2018

Publication Title

Micromachines

Volume

9

Issue

2

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.3390/mi9020085

Socpus ID

85042219606 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/85042219606

This document is currently not available here.

Share

COinS