Title

Polyphenol Supplementation Alters Intramuscular Apoptotic Signaling Following Acute Resistance Exercise

Keywords

Black tea extract; EGCG; green tea extract; muscle damage; theaflavins

Abstract

The purpose of this study was to examine the effects of 28-days of supplementation with an aqueous proprietary polyphenol blend (PPB) sourced from Camellia sinensis on intramuscular apoptotic signaling following an acute lower-body resistance exercise protocol and subsequent recovery. Untrained males (n = 38, 21.8 ± 2.7 years, 173.4 ± 7.9 cm, 77.6 ± 14.6 kg) were randomized to PPB (n = 14), placebo (PL; n = 14) or control (CON; n = 10). Participants completed a lower-body resistance exercise protocol comprised of the squat, leg press, and leg extension exercises. Skeletal muscle microbiopsies were obtained from the vastus lateralis preexercise (PRE), 1-h (1HR), 5-h (5HR), and 48-h (48HR) post-resistance exercise. Apoptotic signaling pathways were quantified using multiplex signaling assay kits to quantify total proteins (Caspase 3, 8, 9) and markers of phosphorylation status (JNK, FADD, p53, BAD, Bcl-2). Changes in markers of muscle damage and intramuscular signaling were analyzed via separate repeated measures analysis of variance (ANOVA). Change in Bcl-2 phosphorylation at 1H was significantly greater in PL compared to CON (P = 0.001). BAD phosphorylation was significantly elevated at 5H in PL compared to PPB (P = 0.015) and CON (P = 0.006). The change in JNK phosphorylation was significantly greater in PPB (P = 0.009), and PL (P = 0.017) compared to CON at 1H, while the change for PL was elevated compared to CON at 5H (P = 0.002). A main effect was observed (P < 0.05) at 1H, 5H, and 48H for p53 and Caspase 8, with Caspase 3 and Caspase 9 elevated at 48H. These data indicate that chronic supplementation with PPB alters apoptotic signaling in skeletal muscle following acute muscle-damaging resistance exercise.

Publication Date

1-1-2018

Publication Title

Physiological Reports

Volume

6

Issue

2

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.14814/phy2.13552

Socpus ID

85041234260 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/85041234260

This document is currently not available here.

Share

COinS