Joint Solution For Pet Image Segmentation, Denoising, And Partial Volume Correction

Keywords

Affinity propagation; Denoising; Partial volume correction; Regional means denoising; Segmentation

Abstract

Segmentation, denoising, and partial volume correction (PVC) are three major processes in the quantification of uptake regions in post-reconstruction PET images. These problems are conventionally addressed by independent steps. In this study, we hypothesize that these three processes are dependent; therefore, jointly solving them can provide optimal support for quantification of the PET images. To achieve this, we utilize interactions among these processes when designing solutions for each challenge. We also demonstrate that segmentation can help in denoising and PVC by locally constraining the smoothness and correction criteria. For denoising, we adapt generalized Anscombe transformation to Gaussianize the multiplicative noise followed by a new adaptive smoothing algorithm called regional mean denoising. For PVC, we propose a volume consistency-based iterative voxel-based correction algorithm in which denoised and delineated PET images guide the correction process during each iteration precisely. For PET image segmentation, we use affinity propagation (AP)-based iterative clustering method that helps the integration of PVC and denoising algorithms into the delineation process. Qualitative and quantitative results, obtained from phantoms, clinical, and pre-clinical data, show that the proposed framework provides an improved and joint solution for segmentation, denoising, and partial volume correction.

Publication Date

5-1-2018

Publication Title

Medical Image Analysis

Volume

46

Number of Pages

229-243

Document Type

Article

Personal Identifier

scopus

DOI Link

https://doi.org/10.1016/j.media.2018.03.007

Socpus ID

85044953306 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/85044953306

This document is currently not available here.

Share

COinS