Salient Object Detection Driven By Fixation Prediction

Abstract

Research in visual saliency has been focused on two major types of models namely fixation prediction and salient object detection. The relationship between the two, however, has been less explored. In this paper, we propose to employ the former model type to identify and segment salient objects in scenes. We build a novel neural network called Attentive Saliency Network (ASNet)1 that learns to detect salient objects from fixation maps. The fixation map, derived at the upper network layers, captures a high-level understanding of the scene. Salient object detection is then viewed as fine-grained object-level saliency segmentation and is progressively optimized with the guidance of the fixation map in a top-down manner. ASNet is based on a hierarchy of convolutional LSTMs (convLSTMs) that offers an efficient recurrent mechanism for sequential refinement of the segmentation map. Several loss functions are introduced for boosting the performance of the ASNet. Extensive experimental evaluation shows that our proposed ASNet is capable of generating accurate segmentation maps with the help of the computed fixation map. Our work offers a deeper insight into the mechanisms of attention and narrows the gap between salient object detection and fixation prediction.

Publication Date

12-14-2018

Publication Title

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Number of Pages

1711-1720

Document Type

Article; Proceedings Paper

Personal Identifier

scopus

DOI Link

https://doi.org/10.1109/CVPR.2018.00184

Socpus ID

85054839784 (Scopus)

Source API URL

https://api.elsevier.com/content/abstract/scopus_id/85054839784

This document is currently not available here.

Share

COinS