Extracting Textual Features Of Financial Social Media To Detect Cognitive Hacking
Keywords
Abnormal behavior; Cognitive hacking; Cyber threats; Cybersecurity; Feature extraction; Financial market; Information gain; Social media; Text mining
Abstract
Social media are increasingly reflecting and influencing the behavior of human and financial market. Cognitive hacking leverages the influence of social media to spread deceptive information with an intent to gain abnormal profits illegally or to cause losses. Measuring the information content in financial social media can be useful for identifying these attacks. In this paper, we developed an approach to identifying social media features that correlate with abnormal returns of the stocks of companies vulnerable to be targets of cognitive hacking. To test the approach, we collected price data and 865,289 social media messages on four technology companies from July 2017 to June 2018, and extracted features that contributed to abnormal stock movements. Preliminary results show that terms that are simple, motivate actions, incite emotion, and uses exaggeration are ranked high in the features of messages associated with abnormal price movements. We also provide selected messages to illustrate the use of these features in potential cognitive hacking attacks.
Publication Date
12-24-2018
Publication Title
2018 IEEE International Conference on Intelligence and Security Informatics, ISI 2018
Number of Pages
244-246
Document Type
Article; Proceedings Paper
Personal Identifier
scopus
DOI Link
https://doi.org/10.1109/ISI.2018.8587364
Copyright Status
Unknown
Socpus ID
85061061688 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/85061061688
STARS Citation
Chung, Wingyan; Liu, Jinwei; Tang, Xinlin; and Lai, Vincent S.K., "Extracting Textual Features Of Financial Social Media To Detect Cognitive Hacking" (2018). Scopus Export 2015-2019. 9529.
https://stars.library.ucf.edu/scopus2015/9529