Principal Functions Of Non-Selfadjoint Discrete Sturm-Liouville Equations With Quadratic Spectral Parameter In Boundary Conditions
Keywords
Discrete equations; eigenparameter; eigenvalues; principal functions; spectral analysis
Abstract
In this paper, we study the principal functions corresponding to the eigenvalues and the spectral singularities of the boundary value problem (BVP) an-1yn-1 + bnyn + anyn+1 = λyn, n∈ ℕ (γ0 + γ1λ + γ2λ2)y1 + (β0 _ β1λ + β2λ2)yo = 0 where (an) and (bn) n ∈ ℕ are complex sequences, γi βi, ∈ and ℂ is a eigenparameter.
Publication Date
4-3-2018
Publication Title
Complex Variables and Elliptic Equations
Volume
63
Issue
4
Number of Pages
472-481
Document Type
Article
Personal Identifier
scopus
DOI Link
https://doi.org/10.1080/17476933.2017.1322073
Copyright Status
Unknown
Socpus ID
85021420641 (Scopus)
Source API URL
https://api.elsevier.com/content/abstract/scopus_id/85021420641
STARS Citation
Koprubasi, Turhan and Yokus, Nihal, "Principal Functions Of Non-Selfadjoint Discrete Sturm-Liouville Equations With Quadratic Spectral Parameter In Boundary Conditions" (2018). Scopus Export 2015-2019. 9810.
https://stars.library.ucf.edu/scopus2015/9810