Three-photon absorption, Surface plasmon, Nonlinear absorption, Multi-photon induced fluorescence


Multi-photon absorption processes have received significant attention from the scientific community during the last decade, mainly because of their potential applications in optical limiting, data storage and biomedical fields. Perhaps, one of the most investigated processes studied so far has been two-photon absorption (2PA). These investigations have resulted in successful applications in all the fields mentioned above. However, 2PA present some limitations in the biomedical field when pumping at typical 2PA wavelengths. In order to overcome these limitations, three-photon absorption (3PA) process has been proposed. However, 3PA in organic molecules has a disadvantage, typical values of σ3' are small (10-81 cm6s2/photon2), therefore, 3PA excitation requires high irradiances to induce the promotion of electrons from the ground state to the final excited state. To overcome this obstacle, specific molecules that exhibit large 3PA cross-section must be designed. Thus far, there is a lack of systematic studies that correlate 3PA processes with the molecular structure of organic compounds. In order to fill the existent gap in 3PA molecular engineering, in this dissertation we have investigated the structure/property relationship for a new family of fluorene derivatives with very high three-photon absorption cross-sections. We demonstrated that the symmetric intramolecular charge transfer as well as the -electron conjugation length enhances the 3PA cross-section of fluorene derivatives. In addition, we showed that the withdrawing electron character of the attractor groups in a pull-pull geometry proved greater 3PA cross-section. After looking for alternative ways to enhance the effective σ3' of organic molecules, we investigated the enhancement of two- and three-photon absorption processes by means of Surface Plasmon. We demonstrated an enhancement of the effective two- and three-photon absorption cross-section of an organic compound of 480 and 30 folds, respectively. We proved that the enhancement is a direct consequence of the electric field enhancement at a metal/buffer interface. Next, motivated by the demands for new materials with enhanced nonlinear optical properties, we studied the 3PA of Hematoporphyrin IX and J-aggregate supramolecular systems. As a result, we were able to propose the use of 3PA in photodynamic therapy using Photofrin, the only drug approved by the FDA for PDT.


If this is your thesis or dissertation, and want to learn how to access it or for more information about readership statistics, contact us at

Graduation Date





Hernandez, Florencio


Doctor of Philosophy (Ph.D.)


College of Optics and Photonics

Degree Program









Length of Campus-only Access


Access Status

Doctoral Dissertation (Open Access)